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ABSTRACT. Various schemes of the location method in computing
supersonic flows around a blunt body are discussed and
compared citing references. Indirect methods indicated

low accuracies in the computations and a comparison of come
putations using the direct method for all three schemes of

the integral relation method, the line method, and the
location method indicated good concordance of results
obtained.

1. The difficulties in computing the steady supersonic flow around two- 1514
dimensional blunt bodies stem from the fact that what is being solved is a system
of mixed equations, as well as of detailed parameters determining the unknown
boundary of the reference region in advance. These difficulties increase
significantly with increase in the number of nodes in the reference grid,

particularly when passing to the computation of 'space currents.

From this point of view, location methods have many advantages. In these
methods time, t, is introduced as an independent variable, and the solution
of the stationary problem is sought as the limit in the nonstationary problem
~when t * o, The problem can bé-described by a system of equations of the hyper- 1515
bolic type. Therefore, despite the increase in the ﬁumber of independent
variables, the solution is simpler than that obtained for equations of the
mixed type. An increase in the number of space variables will not complicate
the solution algorithm, in principle, but the difficulties in the main are those

) T ~1§:\
stemming from the increase in meﬁSF?\and machine time required.

Various schemes of the location ﬁethod are described in references [1—4],
for example. These schemes are still far from perfected, and this is particular-
ly so in the case of three space variables. There are two factors, basically,
that determine the improvement in the effectiveness of location methods, while

retaining necessary accuracy:

* Numbers in the margin indicate pagination in the foreign text.



(a) the possibility of making the
computatiohs using an approximate,
‘specified coverage of initial

data assigned for t = Oj

(b) reduction in the time required

for the computation of the variant.

The first factor is attributable to

.what follows.

Widely used today is a gradual trane

sition from an available variant to an
Figure 1. unknown one, using the parameters of the

problem (shape of the body, Mach number, angle of attack, and the like).. This

procedure, while yieldihg many subsidiary results, takes a great deal of time,

and is unsatisfactory. It is used principally because there is no proof of the

existence, or singieness of a solution, and can be explained, in practice, by

the fact that very often it is impossible to obtain a solution from the approxi=-

mate, specified initial data (tha% is, not from an intermediate solution). It

is desirable to create methods and means of‘making the computation from the

approximate initial data, without requiring the obtaining of a complex algorithm

for these data, or using another, even more approximate method.

Reduction in variant computation time is associated with the selection
of computational schemes such that the time step, T, can be increased, or with
the selection of schemes with an optimal number of operations per time step.
The fact is that straightforward explicit schemes with order of accuracy O0(T)
(scheme [5], for example) are either too approximate, or location takes place
too slowly when these schemes are used. Schemes of an order of accuracy O(Tz)
(in [4], for example) provide a more rapid location, but the volume of computa-
tions per step is greater by a factor of 6 to 8 (in the case of two space
variables) and greater by é'factor of 12 to 14 (for three space variables)
than in the scheme.in [5]. Also to be remembered when seeking optimal schemes
is the accuracy,of the final rgsult, something that will depend on scheme se-

lection. : o



2. Results in [3] indicate that the scheme in [5] will yield approximate
results in the case of a direct?ééliﬁigtion ("diffuse" shock wave). We used
the method in this latter to coﬁpute the Prandtl-Meyer flow (reference grid
30 x 30 nodes), the flow around a wedge (30 x 116 nodes), and around a flat step
(58 x 50 nodes). The computations confirmed the conclusions with respect to the
ineffectiveness of this method arrived at in [4]. Compared in Figure 1 are the
density distribution, obtained from the computation made for the Prandtl-Meyer
flow, and the exact density distribution (dashed). The disturbed region en-
compasses virtually the entire region in which the computation was made.
The shock wave front is greatly diffuse in the case of the flow around the
wedge. Practicall& speaking, the position of the sonic point beyond the sfep
angle is not dependent on time t in the location process, but with decrease in
7 (that is, with increase in the coefficiént of artificial viscosity) moves /516
downstream from the anéular point, and is associated, therefore, with the intro=
duction of viscosity. Figure 2 shows the step velocity distribution at the
end of the computation (complete location of the flow was not obtained, and this
was true in [3] as well). The dashed curve is the plot of the results of the

computation made using the integral relations method obtained in [6],

7. A:;:' . - ' y3* 3. We used the location method to
" sk y' 1 e" }{f investigate a broader class of schemes
o4k . o .~1:'ﬂ ;\  in which the shock wave was given as a
Lost ,/ o '; : discontinuity and was the boundary of
0.2v ;;’/ a h the region for which the computation was
RS ,’,."’ o ' to be made. |

7 _ﬁ ~vﬁ. Wy The method proposed in [4] was used.

8 39 «wly=a0)
' The following schemes were used to
Fi 20
igure compute the interior points of the region
when the transition was made to a new time layer:
(1) scheme (L) w1th artificial v150051ty dependlng on the parameter a:
o~ ¥

gm.a = “gmm + (1 —=a)'/s [8m+l.u + Em-t.n + S’m.n-n + gm.u-x] +(xc )m,n“. : (1)
when oo = O the scheme converts to that in [5];

(2) scheme (L -~ W):
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Gmn = gmin +(2¢') mynT + (gt Ymon 5 (2)

Here the subscripts cprrespond to the number of space variable nodes, the super-
scripts to time variable nodes. The prime with the subscript denotes a partial
derivative. The magnitudes of gt' are determined through the main system of |
equations, and the second derivatives, gtt"’ by the differentiation of the

main system with respect to all independent variables. Central differences

were used to approximate the derivatives with respect to the space variables.

k., There are two reasons for the oscillations that can occur in the inter-
nal field during the solution of the problem: instability of the finite-
difference schemes; and the physical process of'location. The correct selection
of step T will eliminate the first. The second arises as a result of shock
wave motion. Because of the approximate assignment of the initial fielé, the
shock wave will move to and ‘from the body during thefcomputation. This oscilla-
‘tion is damped (Figure 3), and causes the internal field to oscillate. The
compressed gas waves thus formed are reflected from the body, return to the shock
wave, and can destroy it. The shock wave becomes sawtoothed, and the computation-

al accuracy is reduced.

Introduction of artificial viscosity (o £ 1) significantly reduces the
amplitude of wave oscillations, or even makes the process aperiodic (when
a = 0) (see figure 3). At the same time the accurécy of the final results
decreases. For example, the distance 50 of the shock wave from the sphere when
M°° = 10 and a = O cannot be dgtermined with any more accuracy than 12%. The
loss of accuracy in the results in [3] are attributable primarily to the intro-
duction of artificiél viscosity (a = O) in the computation of internal field

points, and not only by the presence of the diffuse shock wave front.

Accordingly, the scheme in [5] rapidly damps the oscillations in the
internal field, but yields more approximate results. It is therefore desirable:

to gradually increase the parameter o during the computation.

Scheme (L - W) is highly accurate when the oscillation process is relatively
weak, but the Yolume of computations at the point for which they are being made

is great.

The procedure of "freezing" the position of the shock wave can be used to /517

avoid the onset of oscillations in the internal field attributable to shock

L
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TABLE 1. SPHERE, M_ = 10.

Number p/p_ on [Bernoulli constant
S . §
cheme of 80 |P'0/Palthe™body |in the flow field
nodes when
a=0 6x2 | '—0.1004 | 6.762 | 3.609 | 0.9816—1.0%5
a==0 12%4 —0.1436 | 6.458 . 3.335 - 0.9391—1,023
== () 2423 —0.1143" 6.524 3.398 | 0.9520—14,025
o == 3]y . 6%2 =—0,1245 6.312 3.269 ©0,9996—1.019
a=7/y - BX2° —0.1307 | .6.224 3.220 0.9958—14.014
o =231/ 62 —0,1355 6.166 3.205 0.9992—1,010
o= 6x2 —0.1370 8.151 3.208 0.9990-—1,008 -
2"—' ?’V -igxz -—8%%;? gigg : gig'sf <. 0,9981{—1,008 -
— W 0, . A .9 L00%
Integral method X - * A I 9»9-98’2—1 90“
scheme I II apprs —0.1360 6.153 3.18*
scheme III, | (x5 —0,1354 | '6.153 3.08% .

Note: *data obtained bj extrapolation.

wave motion. The wave, at some time interval 6t (Figure L), is taken as fixed,
and its position is what it would be at the time the interval begins. The
velocity at which fhe wave is moving is taken as equal to zero. Once the

field is stabilized, this flow is equivalent to the flow in a duct, on one wall
of which (on the body) the‘nd-flow condition is satisfied, but in which gaé is
supplied through ﬁhe other tthe shock wave) in accordance with a law correspond-

ing to the Rankine~Hugoniot conditions. The length of the "freezing'" interval



should be such that the osc¢illations caused by shock wave motion are damped in

the internal field (the number of steps in an interval is 20 to 30, approximately).
"Freezing" results in more rapid location, particularly when the initial position
of the wave differs little from the true position, and the initial internal field
is given as approximate. The solid line in Figure 4 shows wave motion without
freezing," the dashed line that with "freezing." The dash-dot curve corresponds

to the limit.

Distribution of parameters between wave 1518
and smooth body is close to linear for large
M_, and this corresponds to the method we

adopted for defining the reference field.

The reference field is assigned more and more

approximately with reduction in M_, and the

amplitude of the oscillation of the shock wave
increases. "Freezing' effectiveness increases
accordingly. This procedure was more

16 effective at small supersonic M_ numbers.

5. Reference [7] pointed out that com-

putations of the flow around blunt bodies
1z ",  yield results with a pressure distribution
error in excess of 10%. (It is known that

- ! -
pressure on a body is a conservative character-

P LT .

, - istic, and can be computed quite accurately.)
0.8 The low accuracy can be explained by the use
of indirect methods. The comparison made in

+~=2f8l, as well as in this paper, is indicative

of the good concordance of the results obtained

#.iq -1 ' 'Y X by direct methods. The comparison was made
. for all three schemes of the integral relation
Figure 5. .

method, for the line method, and for the
location method. Flows over spheres and cylinders in the range of change in
Mm numbers from 2 to 10 were compared. The concordance in the axisymmetrical

case was better than in the flat case, and better for large M numbers than



for lesser ones. The law of distribution of parameters between body and shock

wave was close to linear for large M°° numbers.

The result was that even when

the number of internal field nodes was small (6 x 2, for example), quite

accurate results were obtained, and the solution was relatively insensitive to

increase in the number of nodes in the grid (see the distance 60 between body

~and shock wave, for example, or the ratio of the density at the stagnation

TABLE 2.

CYLINDER, M_

= 3.

Scheme Number of 60 Bernoulli constant in
nodes the flow field
L-W 12x5 ~0,6726 0.9475~1.037
" 24x5 -0.6791 0.9573=1.010
" 24x11 «~0.6901 0.9981-1.007
" 24x23 ~0.6953 0.9993-1.006
Method of 4 rays -0.6988
straight lines
Integral method
scheme I III approx. =0.703
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point to the density in the inéoming flow po'/pw, Table 1). The number of 1520
reference points must be increased in order to reduce the Mm numbers (parti-
cularly in the case of a plane flow). The dependence of the position of the
wave on the number of internal field nodes will be seen from Table 2 and

Figure 5. The resu1£s of the computations are very close to the data A. P.
Bazzhin and I. F. Chelysheva received‘by using the line method, and the integral
relations method (schemes I and III from [8]1). The differences in the positions
of the shock waves were not in excess of 1%. The line on khe cylinder obtained
by O. M. Belotserkovskiy [9] differs somewhat from that obtained using the
location method and the line method (Figure 5). Figure 6 compares pressure

and density on the surface of a cylinder and the shock wave when M°° = 3, from
data obtained using various metﬁ&&§§§§ghe dashed ¢urves in Figures 5 and 6

are for the III approximation wﬁen the integral relations method was used
(scheme I) [8], and the dash~dot curves are for the lines and small circle

method, and the location method. ¢

8



6. The flow around a profile with great change in surface curvature was
computed. The profile equation used was Yo = 1/2 V(xo+l)-0.04(xo+1)2].
The results of this computation (the solid curves) are compared with the data
obtained by A. P. Bazzhin in 1963, u;ing the first approximation of the
integral relations method (the dotted lines), in Figure 7 and 8. Shock wave
positions differ about 10%. The integral method yielded more precise parameters
on the body‘than it did wave position, excépt in thg vicinity of the sonic

points. The y coordinaﬁe of the stagnation point differs by 2%.

The author wishes to thank A. P. Bazzhin, S. V.'Pirogova, F. D. Popov,
and I. F. Chelysheva for permission to compare the results of the computations
made using other methods, and for their useful discussion of the paper.

Submitted for publication .
17 October 1968.



REFERENCES

1. Godunov, S.K., Zabrodin, A.V., Prokopov, G.P., "A difference scheme
for two-dimensional stationary problems in gas dynamics, and the
flow field of a branched shock wave,'" Zh. Vychisl. Matem. i Matem.
Fiz., Vol. 1, No. 6, 1961, pp. 1020-1050.

2. Rusanov, V.V., "A three-dimensional supersonic Qas flow past smooth blunt
bodies," Proc. 11 Intern. Congress Appl. Mech., Munich, 1964, pp. 774-
778. '

3. Bohachevsky, I.0., Rubin, E.L., "A direct method for computation of
non-equilibrium flows with detached shock waves," ATAA Journal,
Vol. 4, No. 4, 1966, pp. 600-607.

4, Moretti, G., kbbett, M., "A time~dependent computational method for blunt
body flows," AIAA Journal, Vol. &, No. 12, 1966, pp. 2136-214l,

5. Lax, P.D., '"Weak solutions of nonlinear hyperbolic equations and their
numerical computation," Commun. Pure and Appl. Math., Vol. 7, No. 1,

1954, pp. 159-193.

6. Bazzhin, A.P., "Computation of the supersonic flow of a gas around a flat
plate with an unattached shock wave," Inzh. Zh., Vol. 3, No. 2, 1963,
pp. 222-227.

7o Perry, J.C., Pasiuk, L., "A comparison of solutions to a blunt body
problem," AIAA Journal, Vol. 4, No. 8, 1966, pp. 153-155.

8. Obtekaniye zatuplénnykh tel sverkhzvukovym potokom gaza [Supersonic gas
flow around blunt bodies], Ed. O. M. Belotserkovskiy, Moscow,
VIs AN SSSR, 1966.

‘9. Belotserkovskiy, O.M., "Computation of the flow around a circular
cylinder with branched shock wave," IN: Vychisl. Matem. [Computational
Mathematics], No. 3, 1958, Moscow, AN SSSR Press, pp. 149-185.

Translated for the National Aeronautics and Space Administration
under contract No. NASw-2038 by Translation Consultants, Ltd.,
94l S, Wakefield St., Arlington, Virginia 22204.

10



